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Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data
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The wavelet decomposition is used to generalize the multifractal formalism to singular signals. The
singularity spectrum is directly determined from the scaling behavior of partition functions that are
defined from the wavelet transform modulus maxima. Illustrations on fractal signals with a recursive
structure, e.g., devil’s staircases, are shown. Applications to fully developed turbulence data and Browni-

an signals are reported.
PACS numbers: 47.25.Cg, 02.50.+s, 05.40.+j

The recently developed multifractal formalism [1] has
proven particularly fruitful in the characterization of
singular measures arising in a variety of physical situa-
tions [2]. This formalism accounts for the statistical scal-
ing properties of these measures through the determina-
tion of their singularity spectrum [1]1 f(a), which is inti-
mately related to the generalized fractal dimensions [3]
D,. The f(a) singularity spectrum provides a rather in-
tuitive description of a multifractal measure in terms of
interwoven sets of Hausdorff dimension f(a) correspond-
ing to singularity strength a. Actually, the concept of
multifractality originated from a general class of multi-
plicative cascade models introduced by Mandelbrot
[4(a)] in the context of fully developed turbulence. Mea-
surements of the f(a) spectrum based on the local dissi-
pation have recently brought conspicuous experimental
evidence for the multifractal nature of the dissipation
field in turbulent flows [5]. An alternative multifractal
description [6] of the intermittency of the fine structures
consists of extracting the spectrum D (k) of Holder ex-
ponents h of the velocity field from the inertial scaling
properties of structure functions: S, (/) =((5v))"~1% (p
integer > 0), where &v; is a longitudinal velocity incre-
ment over a distance /. D(h) is essentially the Legendre
transform of the scaling exponents {,. There are, howev-
er, some fundamental drawbacks to this method. Indeed,
it generally fails to fully characterize the singularity spec-
trum D(h), since only the strongest singularities are
amenable to this analysis. Even though one can extend
this study from integer to real positive p values by consid-
ering an absolute value on velocity increments, the struc-
ture functions generally do not exist for p <0. Moreover,
singularities of Holder exponents A > 1 and regular be-
havior introduce drastic bias in the estimate of the (,’s.
The purpose of this Letter is to elaborate on a novel ap-
proach which will allow us to determine the whole singu-
larity spectrum D (k) directly from any experimental sig-
nal. This strategy is based on the use of a new tool intro-
duced in signal analysis, the wavelet transform [7]1 (WT),
which has proven very powerful in characterizing the
scaling properties of multifractal measures [8]. Beyond
the reported applications, our ambition is actually to es-
tablish the foundations for a thermodynamical formalism
for singular signals [9].

The WT of a signal permits an analysis both in physi-
cal space and in scale space [7]. It consists in expanding

© 1991 The American Physical Society

functions in terms of wavelets which are constructed from
one single function, the analyzing wavelet g, by means of
dilations and translations. The WT of a signal s(x) is
defined as

-+ oo
Ty(a,x0) =%f_w s(x)g[

X —Xo

}dx, a>0. ¢))
a

Provided g is well localized around x =0 and has a van-
ishing integral, this transformation is invertible for a
large class of signals s. The WT can be used as a
mathematical microscope [8] to analyze the local regular-
ity of functions [10]. In fact, if the signal s(x) has, at
the point xo, a local scaling (Holder) exponent A (xg) in
the sense that, in the limit /— 0,

so+r ) =sx)+Is'(x0)+ - - - +U"YnNs D (xy)

+Cl1)"E0 4o (1] )

[n<h(xg) <n+1], then Tg(a,xo)—\—ah(x") for a— 0,

provided the first n +1 moments of g are zero. Thus one
can extract the exponent h(xo), for fixed position xo,
from a log-log plot of the WT amplitude versus the scale
a. The situation is somewhat more intricate when investi-
gating fractal signals due to the existence of a hierarchi-
cal distribution of singularities [2]. Locally the Hélder
exponent h(xo) is then governed by the singularities
which accumulate at xo. This results in unavoidable os-
cillations around the expected power-law behavior of the
WT amplitude. The exact determination of 4 from log-
log plots on a finite range of scales is therefore somewhat
uncertain. In particular the local scaling behavior is not
well defined when these oscillations are nonperiodic or
periodic with period larger than the investigated range of
scales [8,11]. Of course there have been many attempts
to circumvent these difficulties, e.g., to follow in the (a,x)
half plane a curve of WT modulus maxima [12,13]
emanating from xo or to adapt locally the shape of the
analyzing wavelet [14], in order to reduce the oscillation
amplitude. In some circumstances, ergodic formulas have
been established by which the Holder exponents can be
obtained as zoom averages over logarithmically varying
scales [11]. Nevertheless, there exist fundamental limita-
tions (which are not intrinsic to the WT technique) to the
measure of Holder exponents from local scaling behavior
in a finite range of scales. Therefore the determination of
statistical quantities like the singularity spectrum D (k)
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requires a method which is more feasible and more ap-
propriate than a systematic investigation of WT local
scaling behavior as previously experienced in Ref.
[13()].

The classical multifractal description [1] in terms of
thermodynamic quantities supposes, more or less explicit-
ly, the existence of an underlying multiplicative process
[4,15]. Previous applications [8] of the wavelet micro-
scope to multifractal measures lying on Cantor sets have
demonstrated its fascinating ability to reveal the con-
struction process (renormalization operation [8(b)]) of
recursive singular measures. Since the analyzing wavelet
g can be chosen orthogonal to polynomial behavior of ar-
bitrarily high order, the WT capability to capture the
intricate singularity arrangement is likely to extend to
fractal signals. As proven by Mallat and Hwang [12],
the WT modulus maxima [i.e.,, the local maxima of
|T,(a,x)| at a given scale a] detect all the singularities
of a large class of signals. Thus they are likely to contain
all the information on the hierarchical distribution of
singularities in the signal. This is clearly illustrated in
Fig. 1(a) where the positions of the WT modulus maxima
of the devil’s staircase shown in Fig. 2(a) reveal the con-
struction rule of the uniform triadic Cantor set upon
which are located the singularities of this continuous and
almost everywhere differentiable signal. At the scale
a=ao3 ", each one of the k92" modulus maxima simul-
taneously bifurcates into two new maxima giving rise to a
cascade of symmetric pitchfork branchings in the limit
a— 0. Our method of computing the singularity spec-
trum of a fractal signal will consist in taking advantage of
the space-scale partitioning given by the maxima repre-
sentation to define a partition function which scales, in
the limit a — 0, in the following way:

Z(a,q) = ;) | T, (a,xi (@) 9~a™ @ ()

X lali
At a given scale a, by not summing over the whole set of
wavelet coefficients but only over the WT modulus maxi-
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FIG. I. WT skeleton showing the positions of the modulus

maxima of T, for (a) the devil’s staircase and (b) the turbulent
velocity signal. In (a) and (b) g is the first and the second
derivative of the Gaussian function, respectively.
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ma {x;(a)};, we directly incorporate the multiplicative
structure of the singularity distribution into the calcula-
tion of the partition function (for a generalization to an
adaptive scale partitioning, see Ref. [9(b)]). Moreover,
in doing so, we get rid of divergences for negative g
values. Let us notice that 7(0) = — Dg; thus, the fractal
dimension Dr can be seen as the ratio of the logarithms
of the average maxima multiplication rate and the aver-
age scale factor, respectively. More generally, if one
identifies in Eq. (2), |T,(a,x;)| with its asymptotic
power-law behavior ah(x'), in the limit a— 0, using the
method of steepest descent, one can show that the singu-
larity spectrum D(h) is the Legendre transform of z(g).
But computing the Legendre transform has several disad-
vantages that may lead to various errors [5]. An alterna-
tive method is to define D (k) in the spirit of the so-called
canonical method defined in Ref. [5(b)]:

h(q)-—llm—— Y To(g:a,x;(a))n|Ty(a,xi(a))],

1 Xi\a
O @l Ga)
D(h(g))= hmoi)— Z T, (q:a xi(@)nT,(g;a,x,(a))
" (3b)
1 1
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FIG. 2. WT measurement of the singularity spectrum of (a)
the devil’s staircase and (b) of a multifractal signal with a
deterministic recursive structure. g is the second derivative of
the Gaussian function. (c) log:Z(a,q)/(qg—1) vs logza. (d)
7(g) vs g. (¢) D(h) vs h. In (d) and (e), A, devil’s staircase;
®, multifractal recursive signal; and ——, theoretical predic-
tions.
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where Ty(g:a,x;) =|T¢(a,x)|9/X,,| T¢(a,x;)|9. One can
thus directly extract the set of Holder exponents A and
the corresponding D(h) spectrum from log-log plots of
the quantities in Eqgs. (3). At this point, let us mention
the main pitfall to our method which is essentially based
on the tracking of WT modulus maxima. There may ex-
ist extra maxima in our wavelet representation that do
not correspond to any singularity in the signal. A way to
remove these spurious maxima would consist of working
with an analyzing wavelet which has all its moments
equal to zero. Unfortunately these wavelets are not of
practical use since they oscillate too much and thus lead
to a proliferation of maxima which make our partition
function calculation not workable numerically. For each
application reported below, we have used real analyzing
wavelets g ™ among the class of derivatives of the Gauss-
ian function [7]. The robustness of our method has been
tested when increasing the order n of derivation.

As illustrated in Figs. 2(c) and 2(d), the scaling ex-
ponents 7(q) of Z(a,q) display a characteristic linear
behavior as a function of ¢ when considering monofractal
signals like the devil’s staircase in Fig. 2(a). The slope of
the graph 7(g) provides an accurate estimate of the
unique Holder exponent & =In2/In3. By either Legendre
transforming 7(g) or using Egs. (3), one gets D(h
=In2/In3) =In2/In3, i.e., the fractal dimension of the
uniform triadic Cantor set. On more general grounds,
one can prove rigorously [9(b)] that for distribution func-
tions s (x) = f* wdu(x) of some invariant measures of ex-
panding Markov maps [1(b)] (“cookie cutter” Cantor
sets), 7(g) =(g —1)D,, where D, is the g-order general-
ized fractal dimensions of u and D(h) is the Hausdorff
dimension of the set of singularities of Holder exponent A
of s. For this class of signals, the cascade of WT modulus
maxima is conservative in the sense that (1) =0 as a
consequence of the normalization of u at each scale. In
Fig. 2 are also shown the results of a similar analysis for
a multifractal signal [Fig. 2(b)] constructed according to
a more general deterministic recursive process. As found
in Fig. 2(d), t(g) is an increasing convex nonlinear func-
tion of ¢q. Its Legendre transform D (k) in Fig. 2(e) is a
well-defined unimodal curve, the support of which ex-
tends over a finite interval Anin <h < hmax. The max-
imum of this curve D(h(g=0))=—17(0)=1 gives the
fractal dimension of the support of the set of singularities
of s; s is almost everywhere singular. Generally 7 (1)=0,
which indicates that the cascade of WT modulus maxima
is not conservative. In Figs. 2(d) and 2(e) the numerical
data are compared with the theoretical predictions; the
agreement for —20<gq < 20 is quite remarkable. As
seen in Fig. 2(c), there exist oscillations superimposed on
the power-law behavior (2) of the partition function. The
main difference from the oscillations observed in the WT
local scaling behavior is the fact that these oscillations
are periodic [discrete scaling invariance of Z(a,q)]1, with
a period which corresponds to one step in the multiplica-
tive recursive construction process [9]. Provided the ac-

cessible range of scales contain a few oscillation periods,
one can thus extract the scaling exponents 7(g) with a
good accuracy. Similar results have been obtained for
stochastic signals generated with a random multiplicative
process [9].

In recent years there have been several attempts to ap-
ply the wavelet analysis to fully developed turbulence
data [13,16]. A preliminary investigation of the velocity
field at inertial range scales has revealed a multifractal
branching process in the wavelet representation that is
clearly different from the fractal branching observed with
Gaussian processes [13(a)]l. Dynamically significant
events having strong localized gradients have been
identified in the turbulent signal [13(b)]. However, be-
cause of the operational limitations of the local scaling
analysis, there has been thus far no reliable determination
of the singularity spectrum D(h) directly from the veloci-
ty signal without recourse to dissipation-type quantities.
In Figs. 1(b) and 3, we present the preliminary results of
our analysis of a turbulent velocity signal recorded in the
wind tunnel SI of ONERA at Modane [17]. The
Taylor-scale-based Reynolds number is R, =2720 and
the extent of the inertial range is almost three decades.
The results reported here concern the analysis in the iner-
tial range of about 100 integral length scales of the
recorded turbulent signal. The analysis of a fractional
Brownian signal [4(b)] having a k ~*° spectrum is shown
for comparison. When plotted versus g, the scaling ex-
ponents 7(g) obtained for the fractional Brownian
motion remarkably fall on a line of slope A =0.33 = 0.01
[Fig. 3(b)]. The monofractality of the Brownian signal is
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FIG. 3. WT measurement of the singularity spectrum of

fractional Brownian motion and turbulent velocity signal [17].
g is as in Fig. 2. (a) Log-log measurements of h(g) from Eq.
(3a). (b) 7(g) vsq. (c) D(h) vs h. In (b) and (c), A, Browni-
an signal; @, turbulent signal; and , average singularity
spectrum obtained from dissipation field data [5] via the Kol-
mogorov scaling relation.
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confirmed in Fig. 3(a) where the direct estimate of A (g)
from Eq. (3a) does not reveal any significant g depen-
dence of this exponent. Similarly, from Eq. (3b) one gets
D(h)=1.00*0.01. Thus, as expected theoretically [18],
we find that the Brownian signal is almost everywhere
singular with a unique Holder exponent h=+. In Fig.
3(b), the 7(g) curve extracted from the WT modulus
maxima [Fig. 1(b)] of the turbulent signal unambiguous-
ly deviates from a straight line. The values of 4 obtained
when varying g from —30 to 30 range in the interval
[0.11,0.60] [Fig. 3(a)l. The corresponding singularity
spectrum D(h) [Fig. 3(c)] displays the characteristic
single-humped shape of multifractal signals. Its max-
imum value D(h(g=0))=—1(0) =1.00 % 0.01 strongly
suggests that the turbulent signal is almost everywhere
singular [9]. The manifest part [4(c)] of D(k) (>0) is
compared to a solid curve which actually corresponds to a
common fit of short-term and long-term statistics data of
dissipation fields at lower Reynolds numbers [5]. This
curve has been deduced from the experimental average
f(a) spectrum of the energy dissipation € by using the
Kolmogorov scaling relation [19] ¢~ (6v;)3/l. The fact
that one cannot discriminate between these two singulari-
ty spectra within the experimental uncertainty can be in-
terpreted a posteriori as an experimental verification of
the Kolmogorov hypothesis. This observation can also be
understood as an experimental confirmation of the
universality of the multifractal singularity spectrum of
fully developed turbulence [5]. However, it is clear that
considerable further work is needed for reliable quantita-
tive conclusions. In particular long-term statistical
analysis must be carried out in order to capture more ac-
curately the latent part [4(c)] [D(h) < 0] of the singular-
ity spectrum including possible violent rare events corre-
sponding to negative Holder exponents [13(b)]. This
analysis is currently in progress.
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